Faculty Submitting: Allison Kelly

Specify here whether "Pre" or "End" of Unit and the Unit #: Pre Unit 3

LOs: Perform calculations using Avogadro's number and use the concept of the mole to convert between atomic/molecular and macroscopic quantities

Determine the empirical and molecular formulas from elemental analysis data

Calculate molarity for solutions and molarity of diluted solutions

Unit 3_	Canvas Question Type: Multiple Question
Question 1	
	Which is the correct way to find the formula mass of C ₆ H ₁₄ O ₂
	Correct Answer: 6x12.01+14x1.008+2x15.999
	Wrong Answers:
	12.01+1.008+15.999
	3x12.01+7x1.008+15.999
	(6+12.01)+(14+1.008)+(2+15.999)
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3_ Question 2	Canvas Question Type: Fill in Multiple blanks
	The [molar] mass of any substance is [numerically] equivalent to its atomic or formula weight in [amu]
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3_ Question 3	Canvas Question Type: Multiple Answers
	Which of the following statements are true? A mole of carbon atoms
	Correct Answers:
	Contains 6.02x10 ²³ carbon atoms
	Weighs 12.01 grams
	Contains the same number of atoms as 1.008 grams of H atoms
	Wrong Answers:
	Weighs 1.000 grams
	Contains 6.02x10 ²³ molecules

Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3_ Question 4	Canvas Question Type: Fill in multiple blanks
	The term "molecular" mass cannot be used for [ionic] compounds because they do not consist of discrete [molecules], instead the term [formula] mass is used.
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3_ Question 5	Canvas Question Type: Matching
	Match the steps for finding an empirical formula.
	Step 1: Determine the moles of each element in the compound from the mass of each element by dividing by the molar mass of the element Step 2: Divide each elements' moles by the smallest molar amount Step 3: Multiple by an integer to achieve a whole number (if needed)
Read More	https://openstax.org/books/chemistry-2e/pages/3-2-determining-empirical-and-molecular-formulas
Unit 3_ Question 6	Canvas Question Type: True/False
	It is possible for the molecular formula of a compound to be the same as the empirical formula of a compound
	Answer: True
Read More	https://openstax.org/books/chemistry-2e/pages/3-2-determining-empirical-and-molecular-formulas
Unit 3_ Question 7	Canvas Question Type: Multiple Choice

